A Frequency Domain Quantitative Technique for Robust Control System Design
نویسندگان
چکیده
Most control techniques require the use of a plant model during the design phase in order to tune the controller parameters. The mathematical models are an approximation of real systems and contain imperfections by several reasons: use of low-order descriptions, unmodelled dynamics, obtaining linear models for a specific operating point (working with poor performance outside of this working point), etc. Therefore, control techniques that work without taking into account these modelling errors, use a fixed-structure model and known parameters (nominal model ) supposing that the model exactly represents the real process, and the imperfections will be removed by means of feedback. However, there exist other control methods called robust control techniques which use these imperfections implicity during the design phase. In the robust control field such imperfections are called uncertainties, and instead of working only with one model (nominal model), a family of models is used forming the nominal model + uncertainties. The uncertainties can be classified in parametric or structured and non-parametric or non-structured. The first ones allow representing the uncertainties into the model coefficients (e.g. the value of a pole placed between maximum and minimum limits). The second ones represent uncertainties as unmodelled dynamics (e.g. differences in the orders of the model and the real system) (Morari and Zafiriou, 1989). The robust control technique which considers more exactly the uncertainties is the Quantitative Feedback Theory (QFT). It is a methodology to design robust controllers based on frequency domain, and was developed by Prof. Isaac Horowitz (Horowitz, 1982; Horowitz and Sidi, 1972; Horowitz, 1993). This technique allows designing robust controllers which fulfil some minimum quantitative specifications considering the presence of uncertainty in the plant model and the existence of perturbations. With this theory, Horowitz showed that the final aim of any control design must be to obtain an open-loop transfer function with the suitable bandwidth (cost of feedback) in order to sensitize the plant and reduce the perturbations. The Nichols plane is used to achieve a desired robust design over the specified region of plant uncertainty where the aim is to design a compensator C(s) and a prefilter F(s) (if it is necessary) (see Figure 1), so that performance and stability specifications are achieved for the family of plants. 17
منابع مشابه
Application of ANN Technique for Interconnected Power System Load Frequency Control (RESEARCH NOTE)
This paper describes an application of Artificial Neural Networks (ANN) to Load Frequency Control (LFC) of nonlinear power systems. Power systems, such as other industrial processes, have parametric uncertainties that for controller design had to take the uncertainties in to account. For this reason, in the design of LFC controller the idea of robust control theories are being used. To improve ...
متن کاملActive control vibration of circular and rectangular plate with Quantitative Feedback Theory (QFT) Method
Natural vibration analysis of plates represents an important issue in engineering applications. In this paper, a new and simplify method for vibration analysis of circular and rectangular plates is presented. The design of an effective robust controller, which consistently attenuates transverse vibration of the plate caused by an external disturbance force, is given. The dynamics of the plate i...
متن کاملA Robust Control Design Technique for Discrete-Time Systems
A robust state feedback design subject to placement of the closed loop eigenvalues in a prescribed region of unit circle is presented. Quantitative measures of robustness and disturbance rejection are investigated. A stochastic optimization algorithm is used to effect trade-off between the free design parameters and to accomplish all the design criteria. A numerical example is given to illustra...
متن کاملRobust Fuzzy Gain-Scheduled Control of the 3-Phase IPMSM
This article presents a fuzzy robust Mixed - Sensitivity Gain - Scheduled H controller based on the Loop -Shaping methodology for a class of MIMO uncertain nonlinear Time - Varying systems. In order to design this controller, the nonlinear parameter - dependent plant is first modeled as a set of linear subsystems by Takagi and Sugeno’s (T - S) fuzzy approach. Both Loop - Shaping methodology and...
متن کاملA New Approach for QFT-type Robust Controller Design in Uncertain Multivariable Systems
This paper presents a robust controller design methodology for a class of linear uncertain multivariable systems with hard time-domain constraints on their outputs and control signals in response to step disturbance inputs. In this approach, the m×m MIMO system is replaced by m2 SISO systems and then, using the QFT technique, desirable controllers are synthesized. The final controller will be d...
متن کاملA New Approach for QFT-type Robust Controller Design in Uncertain Multivariable Systems
This paper presents a robust controller design methodology for a class of linear uncertain multivariable systems with hard time-domain constraints on their outputs and control signals in response to step disturbance inputs. In this approach, the m×m MIMO system is replaced by m2 SISO systems and then, using the QFT technique, desirable controllers are synthesized. The final controller will be d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012